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ГЕОДЕЗИЧЕСКИЕ ОСНОВЫ КАРТ 
ПРОТРАНСТВЕННЫЕ КООРДИНАТЫ 

Пространственные прямоугольные координаты. Рассмотрим пространственные пря-
моугольные координаты, имеющие большое значение в связи с широким использованием 

спутниковых данных. Начало координат - в центре зем-
ного эллипсоида, ось X — в плоскости начального мери-
диана долготы L0, ось Z направлена по оси вращения эл-
липсоида, при этом оси X и Y лежат в плоскости эквато-
ра (рис. 6.1). Если центр эллипсоида совмещен с цен-
тром масс Земли, а начальным меридианом является ме-
ридиан Гринвича (L0= 0), то имеет место гринвичская 
геоцентрическая система координат. Если же центр эл-
липсоида смещен с центра масс Земли, то получим ква-
зигеоцентрическую систему координат. 

Геоцентрические прямоугольные координаты. Из 
рис. 6.1 следует: 
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Эти уравнения используем в качестве исходных для получения последующих формул. 
Выразив радиус параллели r через радиус-вектор ρ и геоцентрическую широту Φ 

Φρ= cosr , 
для координат X, Y, Z получим: 
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Пусть некоторая точка Q расположена на поверхности эллипсоида. Определим ее прямо-
угольные пространственные координаты в функции геодезической широты B и геодезиче-
ской долготы L. Учитывая формулы для радиуса параллели и для взаимосвязи геоцентриче-
ской и геодезической широт для точек на эллипсоиде 

( ) ,tg1tg,cos 2 BeBNr −=Φ=  
получим: 
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Эти формулы верны только для точек на эллипсоиде. Рассмотрим случай, когда некоторая 
точка QH приподнята над земным эллипсоидом на геодезическую высоту H. 
Геодезическая высота H отсчитывается по нормали от точки Q на эллипсоиде. Нормаль 

образует с плоскостью экватора угол, равный геодезической широте B. Поэтому для прира-
щений координат точки QH над точкой Q (рис.6.1) имеем: 

Рис. 6.1. Пространственные 
прямоугольные координаты 
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Суммируя координаты (6.2) и (6.3), получаем формулы прямоугольных координат для то-
чек, расположенных на любых высотах H над эллипсоидом: 
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Производные от X, Y, Z по B, L и H. Их используют в разных целях, в частности, для 
оценки точности определений прямоугольных координат. 
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Для взаимосвязи дисперсий  ошибок σ в X, Y, Z и B, L, H имеем (ρ″= 206265″): 
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Приняв H = 10 км, B = L = 45°, σB= σL= 0,0001″, σH=0,003 м, получим 
σX = σY =σZ ≈ 0,003 м 

Вычисление геоцентрической широты и радиус-вектора. Из формул (6.1) следует: 

222
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+
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Если точка расположена над полюсом (X = Y = 0), то Ф приписывается широта полюса. 
Для радиус-вектора имеем: 

222 ZYX ++=ρ .                                                      (6.6) 

Вычисление геодезической долготы по прямоугольным координатам. Из формул (6.1) 
или (6.4) следует: 
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Если точка лежит в плоскости меридиана, перпендикулярной плоскости начального мери-
диана (X = 0), то долгота L принимается равной 0° при Y = 0, 90о, когда Y > 0, и 270o при 
Y < 0. Если Y = 0, то L = 0 при X ≥ 0, и L = π при X < 0. 
В публикации [10] даётся следующий алгоритм: 

( ),sign1arctg2 Y
RX
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L −π+

+
=  если 0≠Y ; 

;
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000


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22 YXR += .                                                             (6.8) 

Вычисление геодезической широты и высоты. Выводом формул для вычислений гео-
дезических широт и высот занимались многие учёные. Их работы опубликованы. 
Предложенные способы можно разделить на две группы: 

• итеративные, выполняемые последовательными приближениями, 
• неитеративные, вычисляемые по конечным формулам. 
В данной лекции представлены основные, разработанные разными авторами, способы ре-

шений упомянуты в заголовке задач. Практически они все обеспечивают высокую точность 
определений геодезических координат. 

1. Итеративный алгоритм вычисления геодезической широты и высоты по отрезку 
(N+H) нормали к эллипсоиду. Имея в виду формулы (6.4), введём обозначении: 

BS sin= . 221 SeaN −= , SNeP 2= , 

( )HNPZYXQ +=+++= 222 )( . 

Построим следующую последовательность вычислений: 

,,,, 1111 QPNS  

112 /)( QPZS += , 

ε≤−=∆ 12 SS .                                                             (6.9) 

Итерации продолжаются до тех пор, пока абсолютная разность результатов двух последо-
вательных приближений S2 и S1 не станет удовлетворять условию ∆ ≤ ε. Допуск ε определя-
ется погрешностью вычисления геодезической широты. Например, ε = 0,5⋅10-9 (допускается 
ошибка в 0,5 единиц в девятом после запятой знаке синуса) соответствует погрешности 
0,0001″ в широте или около 3 мм в линейной мере. В начальном приближении принимается 
S1 = 0. При этом после первого приближения будет вычислена геоцентрическая широта Ф 
(6.5а). Поэтому данное действие следует рассматривать не как приближение, а как подготов-
ку к итерациям. Удобно, что такая подготовка органически включена в общую схему при-
ближений. Фактически первое приближение лишь начинается после определения геоцентри-
ческой широты. Далее, приняв 21 SS = , приступают к следующему приближению. По завер-
шении итераций вычисляются геодезическая широта и высота: 
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Способ отличается простотой теоретических построений, понятностью алгоритма и высо-
кой точностью получаемых результатов. Он приведён в работе [15] и использован в практи-
куме [14]. Число приближений зависит от требуемой точности вычислений широты B, и это 
число несколько увеличивается с приближением определяемых точек к экватору (табл. 6.1). 
В ходе вычислений не возникает необходимости в каждой итерации находить arcsinB или 
arctgB. Благодаря этому несколько ускоряется весь процесс приближений. 

Таблица 6.1 
Число приближений в способе 

вычисления широт и высот по отрезку (N+H) 

Число приближений при 
разных широтах 

Точность 
вычислений 

sinB 
90° 89° 45° 5° 

10-6 1 2 3 3 

10-9 1 2 4 4 

10-12 1 3 5 6 

2. Итеративный алгоритм вычисления геодезической широты и высоты на основе 
геометрических представлений. Суть способа можно выяснить на основе геометрических 

представлений по рис. 6.2. На рис. 6.2а более на-
глядно представлено изображение в плоскости ме-
ридиана долготы L. Заметим, что нормаль к эллип-
соиду, проходящая через точки Q и K и радиус-
вектор ρ = OK, лежат в одной и той же плоскости. 
Поэтому треугольник nOK является плоским тре-
угольником. Тогда из теоремы синусов следует: 

( ) ( )
ρ

−=Φ− B

nO

B 90sinsin
. 

Отрезок nO определяет расстояние между цен-
тром O эллипсоида вращения и точкой n пересече-
ния нормали с полярной осью эллипсоида. Этот от-
резок равен [9, с.44] 

BNenO sin2= . 
Имеем: 

( ) B
BNe

B cos
sin

sin
2

ρ
=Φ−  

Радиус-вектор ρ определяется формулой (6.6). Выделим постоянные для точки K величи-
ны: 

ρ
=

2

2ae
p ; 22 YXR += ; .arctgarcsin

R

ZZ =
ρ

=Φ  

Величина Ф – геоцентрическая широта (6.5а). Учитывая формулу для N радиуса кривизны 
первого вертикала, получаем: 

Рис. 6.2. К построению итеративного 
алгоритма вычислений геодезической ши-
роты и высоты 
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Эти выражения служат основой для построения итеративного алгоритма. Вначале прини-
мается S1 = 0. Вычисляются B и S2. Затем выполняется проверка 

ε≤−=∆ 12 SS . 

Если это условие не выполняется, то принимается 

21 SS = . 
Вычисления повторяются. Итерации продолжаются до вы-
полнения указанного неравенства. После этого находят H: 

BeaBZBRH 22 sin1sincos −−+= .                (6.10) 

Формулу (6.10) легко вывести: 
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( ) .sin1sin1sin

sinsincossincos
222222

2222
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=−+++=+

 
Отсюда следует формула (6.10). Погрешность ∆H в высо-

те H в зависимости от ошибок ∆B в широте определяется 
уравнением [10]: 

( ) 2

2
1

BHaH ∆+−=∆ . 

Если предположить, что половина суммы радиуса Земли с высотой составляет около 
10 000 км или 1010 мм, ошибка в широте 2″, в радианах это около 10-5, а в квадрате 10-10, то 
погрешность в высоте составит 1 мм. 
Такой алгоритм рекомендован в [5]. 

3. Итеративный алгоритм вычисления геодезической широты и высоты по отстоя-
нию R точки измерений от оси вращения эллипсоида. Этому способу учёными уделено 
больше всего внимания. Отстояние R определяется формулой (6.8). Итерациями вычисляется 
широта на основе решения трансцендентного уравнения, следующего из формул (6.4): 

R

BNeZ
B

sin
tg

2+= .                                                          (6.11) 

Если точка расположена над полюсом (R = 0), то величине B приписывается широта по-
люса. В начальном приближении рекомендуется принять [12, 10]: 

( )Re

Z
B

20 1
tg

−
= .                                                                (6.12) 

Погрешность ∆Bk вычисления широты в k-м приближении будет [10]: 

( ) ( ) 12
001

22
"" cossin +

+

+

+
ρ=∆ k

k

kk

k BB
Ha

Hea
B , 

где a, e – параметры эллипсоида, ρ″ = 206 265″ – число угловых секунд в радиане. Макси-
мальные значения погрешностей при геодезической высоте H = 10 км составили: ∆B0 = 1,1″; 
∆B1 = 0,0047″; ∆B2 = 0,000025″. Следовательно, для вычисления широты с погрешностью 

Рис. 6.2а. Треугольник KnO 
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0,0001″ достаточно двух приближений [10]. Практически число итераций колеблется от 3 до 
5. 
Для определения высоты, по мнению П.А. Медведева, лучшей является формула (6.10) 

[10]. 
При вычислениях по формуле (6.11) в каждой итерации приходится определять arctgB и 

sinB. Поэтому в учебнике [11, с. 192] вместо (6.11) рекомендована видоизменённая формула: 
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Широта B и высота H определяются по последнему приближению t: 

tB arctg= , 
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2
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c
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Число приближений, без учёта широты наблюдений, указано в табл. 6.2 [11, с. 193]. 
Таблица 6.2 

Число приближений в способе 
вычисления широт и высот по отрезку R 

Точность 
вычислений 

sinB 

Число 
прибли-
жений  

10-6 2 

10-9 3 

10-12 4 

 
4. Итеративные вычисления геодезической широты и высоты по алгоритму 

Borkowski K.M. Способ основан на использовании приведенной широты U [17]. Для радиу-
са параллели и аппликаты Z имеем (см. (3.1) Лекции 3): 

.sin;cos UbZUar ==  
Из формул (6.4) следуют: 
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Из уравнений исключают высоту H: 
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( ) ( )
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Получают: 
( ) 02sinsin2 =−Ω− UCU .                                                (6.14) 

Это уравнение решают методом Ньютона: 
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В качестве начального приближения, что следует из (6.13) при Н = 0, предлагается 
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Для обеспечения высокой точности результатов достаточно лишь двух итераций [17]. Гео-
дезическая широта и высота вычисляются по формулам: 

,tgtg U
b

a
B =  

( ) ( ) .sinsincoscos BUbZBUaRH −+−=  
Формула для высоты следует из (6.13). 
Этим же автором получена формула, не требующая итераций. Результат найден путём оп-

ределения корней полинома четвертой степени [17]. 

5. Итеративный алгоритм вычисления геодезической широты и высоты способом 
Полещенкова В.Н. Алгоритм изложен в статье [13]. Введён масштабный множитель k, рав-
ный отношению отрезков AD/AC (рис. 6.3). Оба этих отрезка лежат на нормали к эллипсои-

ду. Координаты точки С(xC, zC), лежащей на эллипсоиде, вы-
ражают через координаты точки D(R, Z). Получают: 
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Вводится ряд обозначений для величин, сохраняющих по-
стоянное значение при заданных параметрах эллипсоида a, b, 
e, e’ и координатах точки D: 
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Для уравнения эллипса в плоскости меридиана долготы L, 
на котором лежит точка C, получают: 
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Это выражение можно преобразовать. Но оно и в таком виде удобно для итеративных вы-
числений множителя k. В начальном приближении следует принять e’ = 0. 
Геодезическая широта вычисляется по формуле 

Рис. 6.3. Меридиональное 
сечение эллипсоида 
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1tgtg . 

Формула замечательна сама по себе. Она обобщает формулу связи геоцентрической и гео-
дезической широт и становится верной, как для точек на эллипсоиде, так и для точек во 
внешнем пространстве: k = 1 – для точек на эллипсоиде, k > 1 – для точек над эллипсоидом. 
Любопытно заметить, что с ростом числа k разность широт B и Ф уменьшается. Но лишь с 
удалением от Земли на 6,7 млн. земных радиусов она достигает пренебрегаемой величины 

( ) "0001,0=Φ−∆ B . 
Геоцентрическая широта определяется по формуле (рис. 6.3): 

R

Z=Φtg . 

Формул для вычисления долгот и высот в упомянутой статье нет. Что касается долгот, то 
они вычисляются обычным путём. Судя по приведённой программе, высота определяется 
как длина отрезка CD (рис. 6.3). Поэтому можно записать 

( ) ( )22
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Автором лекций выполнен подсчёт числа итераций в зависимости от широты положения 
точек и точности вычислений множителя k (табл. 6.3). 

Таблица 6.3 
Число приближений при 

вычислениях широт и высот 

Число приближений 
на разных широтах 

Точность 
вычислений 
множителя k 

89° 45° 5° 

10-4 1 2 2 

10-5 1 3 3 

10-6 2 3 3 

10-7 2 3 4 

10-8 2 4 4 

В случае первой строки табл. 6.3 (точность вычислений 10-4) ошибки ∆B в широте дости-
гали 0,0001″, 0,008″ и 0,005″, а ошибки ∆H в высотах – 0, 0,24 и 1,9 метра соответственно в 
полярных, средних и экваториальных широтах. Во всех остальных случаях ошибки в широ-
тах ∆B = 0,0000″. Что касается ошибок ∆H в высотах, то во второй и третьей строках они со-
ответственно равнялись 0, 1 и 12 мм, в четвёртой строке 0, 1 и 0 мм, а в пятой строке равня-
лись нулю миллиметров. Поэтому точность вычислений множителя k должна быть не ниже 
10-8. 
В той же статье [13] опубликован неитеративный алгоритм, составленный на основе опре-

деления корней полинома третьей степени. 
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6. Неитеративный способ вычисления геодезической широты по формуле 
А.А. Изотова. Профессор А.А. Изотов применил последовательные приближения аналити-
чески в ходе вывода формул с удержанием членов только с e4 [6; 7, с. 35]: 

Φ
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B , 

где a, e – параметры эллипсоида, Ф – геоцентрическая широта, ρ - радиус-вектор (6.6). По 
мнению автора статьи [6], приведённые формулы тем точнее, чем точка выше над эллипсои-
дом; максимальная погрешность “выражается в тысячных долях дуговой секунды, когда рас-
сматриваемая точка находится на поверхности эллипсоида под широтой 45°”. 
Для вычисления высоты в [6] и [7 с. 34] приводятся разные формулы. Вторая работа поя-

вилась позже, поэтому ориентируемся на неё: 

.seс22 NBYXH −+=  

Автор статьи [17] сравнил десять разных алгоритмов, в том числе и описанный выше. Из 
приведённой в его публикации таблицы не следует, что данный способ является наиболее 
точным; при низких высотах и на экваторе возможны ошибки около 7 дм. 

7. Неитеративный алгоритм Л.В. Огородовой. В публикации [12] для вычисления с вы-
сокой точностью геодезических координат точек земной поверхности, когда высоты не пре-
вышают 10 км, предложен следующий неитеративный алгоритм: 
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В формулах ρ″=206265″. Однако, в статье [10] указывается, что предложенные формулы 
не обеспечивают заявленной высокой точности. 

8. Неитеративный алгоритм Баландина Б.Н. и группы соавторов. Алгоритм опубли-
кован в статье [1]. По мнению авторов, он обеспечивает точность вычисления геодезической 
широты при Н < 10 000 м до 0,0001”(в линейной мере это составляет 3 мм): 
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При этом значение геодезической высоты может быть вычислено по формуле: 
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( )22 /1 ρ−
−ρ=

Re

b
H . 

Погрешность вычисления геодезической широты оценивается по формуле: 
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Однако в статье [10] указывается, что предложенные формулы не обеспечивают высокой 
точности: ошибка в высоте даже в примере, рассмотренном в [1], составляет 0,056 м. 

9. Неитеративный алгоритм Медведева П.А. Используется приведённая широта. Из 
анализа разных алгоритмов при высотах, не превышающих по абсолютной величине 10 км, 
по точности и по объёму вычислительных операций идеальным является алгоритм Боуринга 
[10]. Он подробно описан в работе [11, c. 193]. Медведев П.А. усовершенствовал алгоритм 
Боуринга. Он предложил всё выражать лишь через исходные параметры эллипсоида: боль-
шую полуось a  и знаменатель f сжатия α=(a-b)/a=1/f. Изменил начальное приближение, по-
зволяющее определять результаты с более высокой точностью. Видоизменил формулу вы-
числения приведённой широты и расширил диапазон допустимых высот. Им установлено, 
что в широкой области -1000 км <H< ∞ формулы алгоритма являются точными. Алгоритм 
принял следующий вид: 

1. Определяются постоянные параметры 

( ) .,
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    При этом 
.,' 2

2
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1 aekbek ==  
2. Вычисляется расстояние R и долгота L по алгоритму (6.8). 
3. Определяется приведённая широта U и геодезическая широта B: 
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4. Если R=0, то L=0, B=(π/2)signZ. 
5. Высота H определяется по формуле, идентичной (6.10) 

aBkaBZBRH /sin1sincos 2
2−−+= . 

“Предлагаемый алгоритм является неитерационным высокоточным и значительно проще 
рекомендованного [5] Госстандартом России” [ 10]. 

Топоцентрические координаты. Различают топоцентрические прямоугольные и поляр-
ные координаты. Начало прямоугольных координат u, v, w расположено над эллипсоидом в 
некоторой точке Q1(B1, L1, H1). Ось w лежит на нормали к эллипсоиду, проходящей через 
точку Q1 (рис. 6.4). Ось u лежит в плоскости меридиана точки Q1, перпендикулярна к оси w и 
направлена на север. Ось v перпендикулярна к осям w и u и направлена в сторону увеличения 
долготы на восток. Координатные оси u и v лежат в плоскости геодезического горизонта, т.е. 
в плоскости, перпендикулярной нормали к эллипсоиду. 
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К полярным координатам относятся: D — расстояние по прямой между двумя точками Q1 
и Q2; Z1 — зенитное расстояние, определяемое вертикальным углом, отсчитываемым в точке 
Q1 от оси w до направления на точку Q2; A1 — геодезический азимут, равный двугранному 

углу между плоскостью меридиана точки Q1 и плоскостью, про-
ходящей через точку Q2 и нормаль в точке Q1, отсчитывается в 
плоскости геодезического горизонта uQ1v от оси u по часовой 
стрелке до направления на точку Q2. 
Прямоугольные и полярные координаты взаимосвязаны фор-

мулами: 
 
 
 
 
Вместо зенитного расстояния Z пользуются также углом ν, 

определяющим высоту спутника над горизонтом. Зенитное рас-
стояние и высота над горизонтом взаимосвязаны соотношением: 

o90=+ vZ . 
В ГНСС измерениях в точке Q1 расположен центр антенны спутникового приёмника, а в 

точке Q2 – центр антенны передатчика космического аппарата. Азимут A и зенитное рас-
стояние Z показывают, где в данный момент на небосводе находится спутник. Вычисление 
зенитных расстояний спутников и азимутов направлений на них необходимо для планирова-
ния измерений и для понимания, где расположен спутник в момент наблюдений. Для наблю-
дений интерес представляют лишь спутники, зенитные расстояния которых Z < 80°. 
Карты небосвода с расположением спутников даются на экранах многих спутниковых 

приёмников. На сайте [16] Информационно-аналитического центра Федерального космиче-
ского агентства РФ по данным локального мониторинга в г. Королеве Московской области 
через каждые 30 секунд выдаётся картина расположения спутников (рис. 6.5). По азимуту и 
высоте над горизонтом легко найти, где в данный момент расположены спутники ГНСС. 
Топоцентрические координаты на точку Q2 связаны с гео-

центрическими координатами точек Q1 и Q2 соотношениями: 
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Решение главных геодезических задач между точками в пространстве. По аналогии с 
решением главных геодезических задач на плоскости и на эллипсоиде сформулируем реше-
ния этих задач в пространстве трех измерений (рис. 6.4). 
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Рис. 6.4. Топоцентриче-
ские координаты 

Рис. 6.5. Видимые по поляр-
ным координатам в 
г. Королеве спутники 

ГЛОНАСС в 11 час 30 мин 
18.07.10 [16] 
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Прямая геодезическая задача. Даны геодезические координаты B1, L1, H1 некоторой точки 
Q1 и полярные топоцентрические координаты A1, Z1, D, определяющие относительно нее по-
ложение второй точки Q2. Требуется найти геодезические координаты B2, L2, H2 точки Q2. 
Для этого вычисляются прямоугольные координаты точки Q1. По полярным координатам 
определяются топоцентрические, а затем и геоцентрические координаты точки Q2, которые 
затем пересчитываются в геодезические широты, долготы и высоты. 

Обратная геодезическая задача. Даны геодезические координаты B1, L1, H1 и B2, L2, H2 
точек Q1 и Q2. Требуется найти величины A1, Z1, D, определяющие положение точки Q2 от-
носительно точки Q1. Задачу решают по следующим формулам: 

.)()()(

,,tg,tg

2
12

2
12

2
12

222
22

1
2

2
1

ZZYYXXD

wvuD
w

vu
Z

u

v
A

−+−+−=

++=+==
 

Трансформирование пространственных прямоугольных координат. Наличие различ-
ных общеземных и референцных координатных систем ведет к необходимости пересчиты-
вать (трансформировать) координаты из одной системы в другую. 
Для этого надо знать, как взаимосвязаны их начала и координатные 
оси (рис. 6.6). Для перевода координат из одной системы в другую, 
необходимо выполнить следующие действия [2, с.28]: 

1. Повернуть систему X, Y, Z про-
тив часовой стрелки вокруг оси Z на 
угол ωZ. Образуется новая система X1, 
Y1, Z1 (рис. 6.7). Поворот выполняется 
при помощи матрицы 
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2. Повернуть систему X1, Y1, Z1 против часовой стрелки во-
круг оси X1 на угол ωX. Образуется новая система X2, Y2, Z2 
(рис. 6.8). Поворот выполняется при помощи матрицы 
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3. Повернуть систему X2, Y2, Z2 против часовой стрелки вокруг 
оси Y2 на угол ωY. Образуется новая система 
X3, Y3, Z3 (рис. 6.9). Поворот выполняется 
при помощи матрицы 
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Рис. 6.6. Трансформирование 
координат из системы А в 
систему В. 

Рис. 6.7. Поворот ко-
ординатных осей на 
угол ωZ 

Рис. 6.8. Поворот ко-
ординатных осей на 
угол ωX 

Рис. 6.9. Поворот ко-
ординатных осей на 
угол ωY 
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Земные системы устанавливаются так, что углы между соответственными осями не пре-
вышают 1-2". Матричные уравнения упрощаются: косинусы заменяются единицами, а сину-
сы — углами в радианной мере. Совокупный переход от начальной системы в трансформи-
рованную систему выполняется матричным произведением ΩΕΨ. С учётом упомянутых уп-
рощений получают: 
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Пересчет координат из системы A в систему B выполняется по формулам (рис. 6.6): 
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где XO, YO, ZO - координаты начала системы A в системе B, m — разница в линейных масшта-
бах систем; ωX, ωY, ωZ — углы разворота координатных осей в радианах. Итак, в ходе пере-
счета координат должны быть учтены смещения начал координатных систем, все длины сис-
темы A увеличены в (1+m) раз, и выполнены три последовательных поворота координатных 
осей против часовой стрелки — на угол ωZ вокруг оси Z, затем на угол ωX вокруг оси X, и по-
сле этого на угол ωY около оси Y. Следовательно, для пересчета координат надо знать семь 
параметров трансформирования — XO, YO, ZO, ωX, ωY, ωZ, m. 
Современные координатные системы ITRS, WGS-84, ПЗ-90.11 практически являются иден-

тичными. Трансформирование координат не потребуется. В основном пересчёт будет необ-
ходим при работе со старыми координатными системами [8]. Так, для пересчета координат 
из СК-95 в ПЗ-90 по уравниванию АГС 1990 - 1996 гг. были получены значения параметров: 
XO = 22,7 м, YO = -128,8 м, ZO = -83,8 м, ωX = +0,11", ωY = +0,07", ωZ = +0,02", m = -0,42 ppm. 
Многие параметры трансформирования устаревших систем имеются в [5]. 
Обратный пересчет — из системы B в систему A, учитывая малость параметров трансфор-

мирования, а также то, что транспонированная матрица поворота координатных осей совпа-
дает с обратной матрицей, ведется по формулам: 
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Пересчет геодезических координат. Выше предполагалось, что трансформирование вы-
полняется на одном и том же эллипсоиде. Разработан ряд способов, когда в ходе трансфор-
мирования выполняется переход и на другой эллипсоид. Анализ точных и упрощенных ал-
горитмов дан в учебном пособии [8], с которым рекомендуется ознакомиться. В данном слу-
чае ограничимся рассмотрением лишь одного способа. Он описан во многих публикациях. 
Вывод формул дан в работе [4, с.20]. Они также имеются в работе [3, с.48]. Примеры вычис-
лений можно найти в пособиях [8, 14]. 
Каждая пространственная прямоугольная координатная система связана со своим земным 

эллипсоидом, а прямоугольные координаты — с геодезическими координатами. Пусть сис-
тема A отнесена к эллипсоиду с большой полуосью aA и первым эксцентриситетом eA, а сис-
тема B —  к эллипсоиду с большой полуосью aB и первым эксцентриситетом eB. Некоторая 
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точка в системе A имеет геодезические координаты BA, LA и HA, а после пересчета в систему 
B будет иметь координаты BB, LB и HB. Очевидно, 

.,, HHHLLLBBB ABBAB A ∆+=∆+=∆+=  

Так как параметры трансформирования обычно малые величины, то разности геодезиче-
ских координат ∆B, ∆L и ∆H также малы. Их можно вычислить по дифференциальным фор-
мулам. В приведенных ниже формулах угловые элементы трансформирования, а также ши-
роты и долготы даны в радианах. При переходе из системы A в систему B используют значе-
ния B, L, H в системе A, а при обратном переходе — в системе B, а поправки ∆B, ∆L, ∆H вы-
читают из соответствующих координат системы B. Имеем: 
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где 
∆a = aB - aA,   ∆e2 = eB

2 - eA
2, a = (aA + aB)/2,  e2 = (eA

2 + eB
2)/2. 

Формулы обеспечивают вычисление приращений геодезических координат с погрешно-
стью в линейной мере до 0,3 м. Для уменьшения погрешности до 0,001 м необходимо вы-
полнить еще одно приближение. С этой целью учитывают значения ∆B, ∆L, ∆H и повторяют 
вычисления, принимая 
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Контрольные вопросы 

1. Какие учитываются случаи при вычислении геодезических долгот L по пространствен-
ным прямоугольным координатам X и Y? 

2. Чем отличаются алгоритмы для вычислений геоцентрических широт от алгоритмов для 
вычислений геодезических широт? 

3. Что общего и чем различаются итеративные алгоритмы вычислений геодезической ши-
роты и высоты по отрезку (N+H) нормали к эллипсоиду и по отстоянию R от оси вра-
щения эллипсоида? 

4. Какие достоинства и недостатки итеративного алгоритм вычисления геодезической ши-
роты и высоты на основе геометрических представлений? 

5. Перечислите основные особенности итеративного алгоритма Borkowski K.M. вычисле-
ния геодезической широты и высоты? 

6. Чем принципиально отличается итеративный алгоритм вычисления геодезической ши-
роты и высоты Полещенкова В.Н. от других итеративных алгоритмов? 

7. Решение главных геодезических задач между точками в пространстве. Какие топоцен-
трические координаты используются при ГНСС-наблюдениях? 

8. Какие необходимо выполнить действия для перевода координат из одной системы от-
счёта в другую? 


